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Abstract

Purpose – The purpose of this paper is to analyse the convective heat transfer of an unsteady
pulsed, laminar, incompressible flow in axisymmetric tubes with periodic sections. The flow is
supposed to be developing dynamically and thermally from the duct inlet. The wall is heated at
constant and uniform temperature.
Design/methodology/approach – The problem is written with classical homogeneous boundary
conditions. We use a shift operator to impose non-homogeneous boundary conditions. Consequently,
this method introduces source terms in the Galerkin formulation. The momentum equations and the
energy equation which govern this problem are numerically solved in space by a spectral Galerkin
method especially oriented to this situation. A Crank-Nicolson scheme permits the resolution in time.
Findings – From the temperature field, the heat transfer phenomenon is presented, discussed
and compared to those obtained in straight cylindrical pipes. This study showed the existence of zones
of dead fluid that locally have a negative influence on heat transfer. Substantial modifications of the
thermal convective heat transfer are highlighted at the entry and the minimum duct sections.
Practical implications – Pulsated flows in axisymmetric geometries can be applied to medical
industries, mechanical engineering and technological processes.
Originality/value – One of the original features of this study is the choice of Chebyshev polynomials
basis in both axial and radial directions for spectral methods, combined with the use of a shift operator
to satisfy non-homogeneous boundary conditions.
Keywords Convection, Heat transfer, Flow, Thermodynamics
Paper type Research paper
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Nomenclature

a thermal diffusity: a ¼ k=�cpðm2=sÞ
cp thermal capacity (J/Kg.K)

e reduced amplitude

h wall function

hT convective heat transfer coefficient
(W/m2K)
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H periodic sinusoidal radius (m)

k heat conductivity (W/m.K)

L geometric half-period tube (m)

p pressure (N/m2)

R tube radius at the
constriction (m)

r radial co-ordinate (m)

T fluid temperature (K)

TW wall temperature (K)

T1 duct inlet temperature (K)

t time (s)

�tt0 dimensionless time:
�tt0 ¼ L=�uu0

~VV ¼ ðu; vÞ velocity field

u axial velocity (m/s)

�uu0 mean bulk velocity (m/s)

v radial velocity (m/s)

z axial co-ordinate (m)

Greek symbols

�W wall heat flux (W/m2)

� dimensionless wavelength

� dimensionless temperature:
� ¼ T � T1ð Þ= TW � T1ð Þ

� dynamic viscosity (Ns/m2)

� kinematic viscosity:
� ¼ �=�ðm2=sÞ

� fluid density (Kg/m3)

� modulation flow rate

�!!0 vorticity function reference (1/s)
�!!0 ¼ �uu0=R

�  0 stream function reference
(m3/s) �  0 ¼ �uu0R

2

� pulsation (rad/s)

Dimensionless numbers

Re Reynolds number based on
the radius at the constriction:
Re ¼ R�uu0=�

Pr Prandtl number: Pr ¼ �=a

Nu Nusselt number

�0mðxÞ averaged bulk temperature

Subscripts

0 steady flow

W wall

1. Introduction
In order to obtain convective heat transfer enhancement, most of the studies are linked
to:

(1) Firstly, the search for optimal geometries (undulated or grooved channels, tube
with periodic sections, etc. . . .): among those geometrical studies, with constant
flow, one can quote the investigations of Blancher (1991), Ghaddar et al. (1986),
for the wavy or grooved plane geometries, in order to highlight the influence of
the forced or natural disturbances on heat transfer.

(2) Secondly, the search for particular flow conditions (transient regime, pulsed
flow, etc.): for example those linked to the periodicity of the pressure gradient
(Chakravarty and Sannigrahi, 1999; Hemida et al., 2002; Batina, 1995), or those
which impose a periodic velocity condition (Young Kim et al., 1998; Lee et al.,
1999) or those which carry on time periodic deformable walls.

Pulsed ducted unsteady flow in a simple axisymmetric geometry has been intensively
investigated, using theoretical models or experimental tests. One could notice works
concerning unsteady axisymmetric ducted flows, laminar or turbulent, in cylindrical
geometry whose analysis has been made by the use of asymptotic methods (Creff et al.,
1985; André et al., 1981, 1987; Batina et al., 1991, 1989). The aim of those studies was to
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quantify particular flow conditions, as Reynolds number, frequency, geometrical
parameters which give high convective heat transfer, under constant heat flux or
uniform wall temperature hypothesis.

We can mention Moschandreau and Zamir (1997) studies, which examine the effects
of pulsation on heat transfer when the field velocity is described in term of superposition
of an established Poiseuille profile and an unsteady pulsatile velocity component. They
show that under those hypotheses there is an enhancement or reduction of heat transfer
when walls are heated at uniform temperature. They observed that for non-dimensional
frequency around to 15, there is an increase in the fluid average temperature as well as
thermal heat transfer.

The pulsated flows studies also highlighted the blood circulation behaviours in arteries
presenting some stenosis or constrictions. From a medical point of view, those constrictions
arteries are responsible for vascular system diseases. For example, Ryval et al. (2003), Guo-
Tao et al. (2004), Gurek et al. (2002), studied a laminar blood circulation in the vicinity of
two consecutive constrictions in a vascular tube for Reynolds numbers located between 25
and 1,000. They conclude that the flow in the arterial model is influenced by the Reynolds
number, the height of stenosis and the geometry of constrictions.

Those types of pulsated flows are also found in many applications such as medical
biology, industrial engineering and other technological processes (Fedele et al., 2005;
Chakravarty and Sannigrahi, 1999). Different works of those authors as Fedele et al.
(2005) show that it is necessary to build a model taking into account physical,
geometrical and temporal flow characteristics.

There are few works relating to the study of the pulsated flows in complex geometries
and in particular axisymmetric geometries with periodic section. In this paper, we will
study this particular case searching for optimal flow conditions which lead to heat
transfer increase. We will compare at least the present numerical resolution to the
cylindrical geometry case (see for example the previous studies of Creff et al. (1985)).

From a numerical point of view, the Navier-Stokes equations written in (! �  )
formulation and the energy equation are solved in space by spectral Galerkin methods
(Canuto et al., 1988; Bernardi and Maday, 1992; Gelfgat, 2004; Shen, 1994, 1995, 1997).
Those classic methods are largely used to solve partial differential equations. The
resolution in time is carried out by Crank-Nicolson scheme.

This work can be summarised as follows: in the first section, we give governing
equations and boundary conditions associated to the physical model. Next, we describe the
spectral numerical method to solve these equations. Then the numerical studies focus on
the thermal problem and its associated heat transfer. Finally, in the last section, numerical
results obtained are analysed in the following order: study of the dynamic field – evolution
of the temperature field – thermal heat transfer. A discussion is given in conclusion.

2. Hypotheses and governing equations
2.1 Hypotheses
We consider a Newtonian incompressible fluid flow developing inside an axisymmetric
cylindrical duct with periodic sinusoidal radius. The unsteadiness imposed to the flow
corresponds to a source of periodic pulsations generating plane waves. This flow is
described in terms of an unsteady pulsed flow superimposed on a steady one. With
regard to the thermal problem, the wall is heated at constant and uniform temperature,
and the fluid inlet temperature for the steady regime is equal to the upstream ambient
temperature. Physical properties of the fluid are supposed to be independent of the
temperature, which involves that the motion and energy equations are uncoupled.
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The geometry of the domain is given by Figure 1 where we consider n0 geometrical
periods.

2.2 Governing equations
The Navier-Stokes governing equations are:

@~VV

@t
þ ð~VV � r~Þ~VV ¼ � 1

�
r~pþ �r2~VV ð1Þ

r~ � ~VV ¼ 0 ð2Þ

The energy equation is:

@T

@t
þ ð~VV � r~ÞT ¼ a�T ð3Þ

With the 2D hypothesis, we use the vorticity-stream function formulation !;  ð Þ for the
Navier-Stokes equations in which the incompressibility condition is automatically
satisfied. In fact, the essential advantage of this formulation compared to the primitive
variables (velocity–pressure formulation) is the reduction of the number of unknown
functions and the non-used of the pressure. But this  equation becomes a fourth order
partial differential equation.

3. Boundary conditions
The present problem is unsteady. This unsteadiness is generated at the initial instant
t ¼ 0, and is sustained during all the time by a source of upstream pulsations. Before
that instant, we consider that the flow is steady. Because of a scheme in time used, it is
necessary for us to solve the steady problem first. Thus, the obtained solution is
introduced as initial condition in the unsteady problem. The boundary conditions are
therefore of two types: boundary conditions for the steady flow (without pulsation) and
boundary conditions for the unsteady flow. They can be summarised as follow:

3.1 Steady flow (t ¼ 0 time step)

. Entry: for the dynamic problem, Poiseuille profile boundary condition is chosen
u0 z ¼ 0; rð Þ ¼ 2�uu0 1� r=Rð Þ2

� �
.

. For the thermal problem, the inlet fluid temperature is equal to the upstream
ambient temperature: T ¼ T1.

Figure 1.
Geometry domain study
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. Exit: the flow velocity is normal to the exit section and verifies the classical flow
condition v0 ¼ 0 and @T0=@z ¼ @u0=@z ¼ 0.

. Axis: axial symmetry: @u=@r ¼ v ¼ @T=@r ¼ 0.

. Wall: slip condition is imposed and the wall heated at constant temperature:
u ¼ v ¼ 0; T ¼ TW .

3.2 Unsteady flow ðt > 0Þ
. Entry: the source of pulsations at the entry section imposes a periodic pressure

gradient modulation. Then the velocity axial component and the stream function
 have a Fourier series expansion in time, such as: f ðz ¼ 0; r; tÞ ¼
f0ðz ¼ 0; rÞ 1þ

PNF

n¼1 �
n: sin n�ð Þ

� �
where f represents u or  .

At this section, to avoid reverse flow, we impose: � < 1.

. Exit: conditions similar to steady flow exit conditions: v ¼ 0 and
@T=@z ¼ @u=@z ¼ 0.

. Axis: the flow preserves at each time an axial symmetry: @u=@r ¼ v ¼
@T=@r ¼ 0.

. Wall: conditions similar to steady flow wall conditions: u ¼ v ¼ 0; T ¼ TW .

4. Resolution of the dynamic problem
4.1 The ð!;  Þ formulation
The momentum equation is explicitly written in !;  ð Þ formulation, such as:

@!̂!

@t
� 1

r

@ 

@z

@!̂!

@r
þ 1

r

@ 

@r

@!̂!

@z
þ 2

r2

@ 

@z
!̂! ¼ � @2!̂!

@r2
þ @

2!̂!

@z2
� 1

r

@!̂!

@r

� �
¼ ��!̂! ð4Þ

!̂! ¼ r! ¼ � @2 

@r2
þ @

2 

@z2
� 1

r

@ 

@r

� �
¼ � ð5Þ

4.2 New formulation of the problem
4.2.1 Dimensionless quantities and variables transformations. One chooses for
reference variables:

err ¼ r

R
;ezz ¼ z

R
;ett ¼ t

�tt0
; e!! ¼ !̂!

�!!0
; e  ¼  

�  0

ð6Þ

with

�tt0 ¼
L

�uu0
; �!!0 ¼

�uu0

R
; �  0 ¼ �uu0R2 ð7Þ
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For the thermal problem, the temperature e�� is made dimensionless in a classic way:

e�� ¼ T � T1
TW � T1

ð8Þ

For convenient reasons, the Reynolds number Re is based on the radius at the duct
constriction:

Re ¼ R�uu0

�
ð9Þ

In order to obtain a computational square domain permitting the use of two-dimensional
Chebyshev polynomials, we proceed to a space variables transformation. This one is
inspired by Sobey, and modified by Blancher. It has been adapted to the axisymmetric
geometry used in this study. Afterwards, we note by H(z) the duct periodic radius and by
� the duct wavelength. Then we define:

� ¼
err

hðxÞ ; x ¼
ezz
�
� 1 ð10Þ

with:

� ¼ L

R
; h xð Þ ¼ 1

R
H ½ðxþ 1Þ:L�; ð11Þ

and

H zð Þ ¼ R 1þ e

2
1� cos � : nO

z

L

� �h in o
, h xð Þ ¼ 1þ e

2
1� cos � : nO xþ 1ð Þð Þ½ �

ð12Þ

Finally, the study domain is transformed into a rectangle �1 � x � 1 and 0 � � � 1
representing the half- space of the square: �1; 1½ � � �1; 1½ �.

4.2.2 New system of governing equations. Considering the transformation of
variables defined before, the new stream – vorticity formulation of this problem is:

!
^ ¼ ��f

e  
h2 @!

^

@ett þ 1

�

@ e  
@�

@!
^

@x
� @

e  
@x

@!
^

@�

 !
þ 2

�2

@ e  
@x
� 2�

h0

h

@ e  
@�

 !
!
^

¼ 1

R
_

e
�g !

^

8>>>>>><>>>>>>:
ð13Þ

where:

�f
e  ¼ h2 @

2 e  
@x2
� 2�h0h

@2 e  
@x@�

þ �2þ �2h02
� �@2 e  

@�2
þ � 2h02� hh00

� 	
� �

2

�


 �
@ e  
@�

( )
ð14Þ
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and

!
^¼ �2h2e!!;�g !

^¼�
Ag x; �ð Þ@

2 !
^

@x2
þBg x; �ð Þ@

2 !
^

@�2
þCg x; �ð Þ@!

^

@�

þDg x; �ð Þ @
2 !
^

@x@�
þEg x; �ð Þ@

2 !
^

@x
þ Fg x; �ð Þ!^

8>>><>>>:
9>>>=>>>; ð15Þ

with:

Ag x; �ð Þ ¼ h2;Bg x; �ð Þ ¼ �2þ �2h02;Cg x; �ð Þ ¼ � 6h02� hh00
� 	

� �
2

�
;

Dg x; �ð Þ ¼ �2�hh0;Eg x; �ð Þ ¼ �4hh0;Fg x; �ð Þ ¼ 2 3h02� hh00
� 	

8<: ð16Þ

R
_

e ¼ eRRe�2 ¼ Re� ð17Þ

For reason of convenience, the radius �will be noted r as follows.

5. Numerical resolution of the dynamic problem

The spectral Galerkin method consists in projecting the unknown functions on
polynomial basis of Chebyshev or Legendre (Canuto et al., 1988; Bernardi and Maday,
1992). We will choose the Chebyshev polynomials, and study the influence of the
physical parameters such as the Reynolds number (between 1 and 50) to remain in 2D
hypothesis. From a numerical point of view we will show the influence of the
polynomials degrees particularly for the thermal problem.

5.1 Resolution of the steady problem

The steady problem is written as follows:

!
^ ¼ ��f

e  
1

r

@ e  
@r

@!
^

@x
� @

e  
@x

@!
^

@r

 !
þ 2

r2

@ e  
@x
� 2r

h0

h

@ e  
@r

 !
!
^ ¼ 1

R
_

e
�g !

^

8>><>>: ð18Þ

5.1.1 The spectral Galerkin method. This problem is written with classical homogeneous
boundary conditions. One of the originalities of this study is the use of a shift operator
allowing the introduction of non-homogeneous boundary conditions. For this reason, the
unknown stream function e  0ðx; rÞ is written by mean of the Poiseuille stream function
	0ðrÞ corresponding to the Poiseuille velocity imposed at the duct entry as:

e  0ðx; rÞ ¼  0ðx; rÞ þ ’0ðrÞ ð19Þ

where the stream function  0ðx; rÞ verifies homogeneous boundary conditions in both
directions x and r.
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The Equation (18) becomes:

1

r2

@ 0

@x

 !ð Þ þ
�ð Þ þ 1

r

@ 0

@r
� !ð Þ þ ��ð Þ þ 1

r

@’0

@r
� !ð Þ � 1

R
_

e
� !ð Þ ¼ 1

R
_

e
�� �

1

r

@’0

@r
��

ð20Þ

with:


 !ð Þ ¼ 2!� r
@!

@r
;
� ¼ 2�� r

@�

@r
;� !ð Þ ¼ @!

@x
� 4

h0

h
!;�� ¼

@�

@x
� 4

h0

h
�;

� !ð Þ ¼�g!;�� ¼�g�;

and �ðx; rÞ ¼ ��f’0ðrÞ.
The corresponding Galerkin method consists in projecting the discretized equations

on a Chebyshev polynomials basis, taking into account the whole boundary conditions

(see Canuto et al., 1988). Then, the stream-function e  0, truncated at development orders

Nx according to the axis x and Nr according to the radius r, is projected on trial

functions as follows:

e  0ðx; rÞ ¼
XNx

k¼0

XNr

l¼0

 klP2lðrÞQkðxÞ ð21Þ

where P2 lðrÞ and Qk xð Þ are polynomial basis constructed from Chebyshev polynomials.

Because of the symmetry property, P2 l rð Þ will be an even function. To construct the

basis P2l rð Þ, we choose a linear combination of Chebyshev polynomials such as (see

Shen, 1994, 1995, 1997; Gelfgat, 2004):

P2 l rð Þ ¼ T2 l rð Þ � l þ 1

l þ 2
T2 lþ1ð Þ rð Þ � T2 lþ2ð Þ rð Þ þ l þ 1

l þ 2
T2 lþ3ð Þ rð Þ ð22Þ

In the Qk xð Þ polynomial basis case, there is no parity according to the axial variable x.

Then, the basis functions Qk xð Þ can be constructed as follows:

Qk xð Þ¼Tk xð Þ� kþ3ð Þ2 kþ1ð Þ
kþ2ð Þ2 kþ2ð Þ

Tkþ1 xð Þ� k2

kþ2ð Þ2
Tkþ2 xð Þþ kþ3ð Þ2 kþ1ð Þ

kþ2ð Þ2 kþ2ð Þ
Tkþ3 xð Þ

ð23Þ

We notice that the non-linear system obtained is solved by the Newton algorithm.

5.2 Resolution of the unsteady problem

From Equation (13), introducing the unknown  function such as: e  x; r; tð Þ ¼
 x; r; tð Þ þ ’ rð ÞA tð Þ and using the Equations (20), we define the operator in which the
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unknown coefficients depend now on time:

L ðx; r; tÞ ¼ �
1

r2

@ 

@x

 !ð Þ þ 
�ð Þ þ 1

r

@ 

@r
� !ð Þ þ ��ð Þ

�
þ 1

r

@’

@r
� !ð Þ � 1

R
_

e
� !ð Þ

!
þ 1

R
_

e
�� �

1

r

@’

@r
�� ð24Þ

Then the previous problem (13)-(16) can take the following form:

h2 @!
^

@t
¼ L x; r; tð Þ ð25Þ

where !
^ ¼ !þ !� and the operator L x; r; tð Þ is non-linear. Notice that !� is the

contribution coming from Poiseuille extension.
The temporal discretization of (25) is made by using the "-method, reduced here to

Crank-Nicolson method. The advantage of this method is to be unconditionally stable.
It leads to the equation below with " ¼ 1=2, which corresponds to a two order scheme:

h2 !
nþ1 � !n

�t
þ h2 @!�ðx; r; tÞ

@t
¼ "L nþ1 x; r; tð Þ þ 1� "ð ÞL n x; r; tð Þ

!n ¼ ��f 
n; 8n

8<: ð26Þ

where the initial condition is given by the solution of the steady problem:

 klðt ¼ 0Þ ¼  0
kl ð27Þ

The relation (23) has the form:

h2! nþ1 � "L nþ1 x; r; tð Þ ¼ S n ð28Þ

with

S n ¼ h2! n � h2�t
@!�

@t
þ 1� "ð Þ�tL n x; r; tð Þ ð29Þ

where

!� ¼ � x; rð ÞAðtÞ with AðtÞ ¼ 1þ
X

1�p�NF

� p sinðp�tÞ
 !

ð30Þ

The unknowns  kl tð Þ are obtained by projecting on the same basis as for the steady
situation before. At each time step, the non-linear system is solved by the Newton
algorithm.

6. Numerical resolution of the thermal problem
6.1 Expression of the energy equation
Using (3) and (6)-(8), the dimensionless energy equation can be written as follows:

h2 @
e��
@ett þ h2euu @e��

@x
þ h evv�� euurh0ð Þ @

e��
@r
¼ 1

R
_

ePr
�f
e�� ð31Þ
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with:

�f
e�� ¼ h2 @

2e��
@x2
� 2rh0h

@2e��
@x@r

þ �2 þ r2h02
� � @2e��

@r2
þ r 2h02 � hh00

� 	
þ �

2

r


 �
@e��
@r

ð32Þ

6.2 Numerical resolution
6.2.1 Choices of the basis functions. The choice of the temperature basis functions is
made in the same way as in the dynamic problem. In order to apply the Galerkin
method, we consider the boundary conditions (section 3) for the temperature �. Let us
set e��ðx; r; tÞ ¼ �ðx; r; tÞ þ �RðrÞ where � is the solution satisfying the homogeneous
boundary conditions and �RðrÞ is a smoothed gap temperature imposed at the entry.
The homogeneous temperature �, truncated at development orders Mx according to the
axis x and Mr according to the radius r, is projected on the trial functions as follows:

�ðx; r; tÞ ¼
XMx

k¼0

XMr

l¼0

�kl tð Þqk xð Þp2 l rð Þ ð33Þ

where p2 l rð Þ and qk xð Þ are built from Chebyshev polynomials as in section 5.
According to temperature boundary conditions as in section 3, we obtain, at last:

qk xð Þ ¼ TkðxÞ þ
4ðkþ 1Þ

ðkþ 1Þ2 þ ðkþ 2Þ2
Tkþ1ðxÞ �

ðkþ 1Þ2 þ k2

ðkþ 1Þ2 þ ðkþ 2Þ2
Tkþ2ðxÞ;

if 0 � k � Mx ð34Þ

and the polynomial p2 l rð Þ is given by:

p2 l rð Þ ¼ T2 lðrÞ � T2ðlþ1ÞðrÞ; if 0 � l � Mr: ð35Þ

6.2.2 Resolution of the steady problem. With (19) and e��ðx; rÞ ¼ �ðx; rÞ þ �RðrÞ, the
steady thermal problem is written as follows:

1

r

@ 

@r
:
@�

@x
� 1

r

@ 

@x
:
@�

@r
þ 2ð1� r2Þ @�

@x
� 1

R
_

ePr
�f � ¼

1

r

@ 

@x
:
@�R

@r
þ 1

R
_

ePr
�f �R ð36Þ

The system obtained is solved by a Gauss type classical method.
6.2.3 The unsteady problem resolution. The unsteady problem is written as follows:

@�

@t
¼ � 1

h2

1

r

@ 

@r
:
@�

@x
� 1

r

@ 

@x
:
@�

@r
þ 1

r

@’

@r

@�

@x
� 1

R
_

ePr
�f �

 !

þ 1

h2

1

r

@ 

@x
:
@�R

@r
þ 1

R
_

ePr
�f �R

 !
�ðx; r; 0Þ ¼ �0ðx; rÞ ð37Þ

where �0 x; rð Þ is the steady thermal problem solution.
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The Equation (37) is numerically integrated in time by using the second order

Crank-Nicolson scheme (" ¼ 1=2 ) which is formulated as follows:

�nþ1 � �n

�t
¼ "L�nþ1 x; r; tð Þ þ 1� "ð ÞL�n x; r; tð Þ ð38Þ

where

L� x; r; tð Þ ¼ � 1

h2

1

r

@ 

@r
:
@�

@x
� 1

r

@ 

@x
:
@�

@r
þ 1

r

@’

@r
AðtÞ @�

@x
� 1

R
_

ePr
�f �

 !

þ 1

h2

1

r

@ 

@x
:
@�R

@r
þ 1

R
_

ePr
�f �R

 !
ð39Þ

By projecting (35) in the Galerkin basis qiðxÞp2jðrÞ
� 	

ij
, one obtains at each time step a

system of linear equations solved by the classical Gauss method.

One can notice that the use of Chebyshev polynomials in both axial and radial

directions is not obvious, and contribute to emphasize this numerical method.

7. Convective heat transfer

The local convective heat transfer coefficient hT is written as follows:

hT x; tð Þ ¼ �W

�Tref

ð40Þ

where �Tref is a typical difference temperature reference. That one depends on the

wall boundary conditions hypotheses.

We have chosen:

�Tref x; tð Þ ¼ TW � Tm x; tð Þ; ð41Þ

where Tm x; tð Þ is the mean bulk temperature given by:

Tm x; tð Þ ¼
Ð 1

0 u x; r; tð Þ:T x; r; tð Þ:rdrÐ 1

0 u x; r; tð Þ:rdr
ð42Þ

The instantaneous convective heat transfer in unsteady flows can formally be defined

by the local Nusselt number Nu(x, t), given by the relation:

Nu x; tð Þ ¼ RhT x; tð Þ
k

ð43Þ

With the variables transform given in section 4, the Nusselt number can be written as

follows:

Nu x; tð Þ ¼ 1

h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ h02

p @� x; tð Þ=@rð ÞW
1� �m x; tð Þ ð44Þ

where h0 is the derivative oh the function h.
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8. Numerical results
8.1 Definition of geometrical, physical and numerical parameters
8.1.1 Geometrical and physical parameters. The studied fluid is air, under normal
conditions of temperature and pressure. The fluid flow is submitted to a pure
sinusoidal pulsation. The previous studies (André et al., 1981, 1987) showed that the
numerical results are in the more stable mode if the ratio R/L is small, compared to the
unit. Consequently, the basic geometry parameters are:

R ¼ 0,02 m; L ¼ 0,08 m; e ¼ E

R
¼ 2;RV ¼ 3R ¼ 0,06 m:

The sinusoidal surface of the wall is represented by the function h:

h xð Þ ¼ 1þ e

2
1� cos �:nO xþ 1ð Þð Þ½ � ð45Þ

where nO indicates the number of geometrical periods chosen here equals to 3.
8.1.2 Choice for the orders of truncature. To ensure the accuracy of our results from

the numerical point of view, we try several orders of truncature in the Chebyshev basis
developments (see Batchi (2005) for details). When the orders of truncature increase, let
e
� be the error calculated between two consecutive truncature orders 
 and � of the
stream function coefficients  kl (respectively, the temperature coefficients �kl ) relative
to the steady flow.

The expression of e
� is:

e
� ¼ max
k;l

f 
kl � f �kl




 


 ð46Þ

where f 
 represents  or �, for the truncature order 
.
Numerical study according to Nx and Nr parameters. For the dynamic point of view,

we note first that the truncature errors e
� depend mainly on the parameter Nx. This
means that the increase in the number of polynomials in the radial direction does not
improve the convergence of the results. Second, Figure 2 shows that the amplitudes of
e
� decrease when the values of Nx increase. With Nr fixed to 5 and Nx � 30, the
truncature errors e
� are negligible, about 2:10�4.

Numerical study according to Mx and Mr parameters. For a given value of Mr, we
observe in Figure 3 a good convergence of the temperature coefficients when Mx
increases. But, unlike dynamic field, for the range of Mr values between 5 and 9, the
analysis of the thermal field leads to slightly different conclusions. Indeed, probably due
to the temperature conditions imposed on the entry section, the thermal field is more
sensitive to the parameter Mr than dynamic field. For a fixed value of Mx, the
temperature truncature errors increase with Mr. Then, optimal convergence is obtained
for Mr ¼ 5. For this value, the truncature error is less than 10�8 when Mx > 56.

In conclusion, we have selected for the dynamic problem: Nx ¼ 30 and Nr ¼ 5, and
for the thermal problem, we have chosen: Mx ¼ 120 and Mr ¼ 5.

8.2 The steady flow
8.2.1 Study of the dynamic field. In order to study the dynamic behaviour of the flow
according to the flow-rate, we varied the Reynolds number between 1 and 50. Figure 4
shows that the flow remains ‘‘with parallel lines’’, i.e. of crawling type, until Re ¼ 8.
From this value, a vortex initially appears in the first geometrical period, with a center
shifted upstream and close to the wall. Then, when Re increases, a less bulky vortex
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appears in the two other geometrical periods. The center of each vortex moves towards
the downstream while moving away from the wall more and more gradually.
The respective volumes occupied by the second and the third vortex and their relative
positions within the undulation are almost identical. These results perfectly agree with
those previously shown by Blancher (1991) and Batina et al. (2004).

8.2.2 Thermal study. Figure 5 shows a comparative study of the convective heat
transfer by means of the Nusselt number, in stationary regime. Different geometries
have been studied: tubes of sinusoidal surface, circular cylindrical tube of radius R. One
can clearly see that the vortex has a negative influence on the heat transfer on almost

Figure 3.
Maximum truncature
error in the Chebyshev
basis development of the
temperature function �
(steady flow, Re ¼ 30)

Figure 2.
Maximum truncature
error in the Chebyshev
basis development of the
stream function  (steady
flow, Re ¼ 30)
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the totality of the duct, except for the entry. Locally, we observe a light heat transfer
enhancement at the constriction which increases with the amplitude of geometry.

From this parametric study, we can give the following conclusions:

(1) The presence of the undulations causes the apparition of vortex in the furrow
beyond a critical Reynolds number equal to 8.

(2) The size of these vortices increases with Re until they fill the totality of the furrow.

(3) In this type of geometry, the spatial periodicity of the flow seems reached only
at the end of the second furrow, even the third. The dynamic phenomena are of
higher amplitudes in the first undulation due to the proximity of the duct entry.
Thus one can expect substantial modifications on the heat transfer in this
privileged area as previously shown by Batina et al. (1989, 1991).

8.3 Unsteady flow
In order to maintain the bidimensional hypothesis, the flow is submitted to low
frequencies ð0 � f � 5 HzÞ and the amplitude of pulsation � do not exceed 70 per cent.
The Reynolds number is fixed to 30 corresponding to a total filling of the furrows.

Figure 5.
Heat transfer comparison

(steady case): different
cylindrical tubes with

sinusoidal surface;
parametric study

according to the reduced
amplitude e of the

geometry

Figure 4.
Parametric study vs

Reynolds number for
three spatial cells
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However one will notice that the present bidimensional hypothesis is a first stage
toward a survey of a 3D problem stability. The corresponding steady regime is taken as
initial condition for the unsteady mode (instant t ¼ 0).

To understand the fluid dynamic behaviour in pulsed regime, Figure 6 shows the
detail of the streamlines for one period T. We note that the vortices quickly disappear

Figure 6.
Time history streamlines
during one period,
� ¼ 0.3, Re ¼ 30,
Pr ¼ 0.73, � ¼ 0:7
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during the first instants, from t ¼ T/8 to t ¼ 3T/8. This interval of time corresponds
to the phase of the flow acceleration, with a maximum reached for t ¼ T/4. After that,
a phase of deceleration appears, with a passage to zero for t ¼ T/2. The size of the
vortex is maximal for t ¼ 3T/4. This stage corresponds to the maximum of the flow
deceleration (�t ¼ 3�=2 ). In the central zone, the flow moves in positive direction, and
close to the wall, the flow moves in opposite direction. After this, the fluid moves more
closer to the wall. For the acceleration phase which follows, the flow tends to take its
initial aspect again. However, with t ¼ T, we approximately find the form of the flow
for t ¼ 0.

8.3.1 The velocity radial profiles. In order to study the radial profiles modifications,
Figure 7 presents the temporal evolution of the radial profiles at different sections
along the duct. One notes the presence of a light annular effect near the tube
constriction (Batina et al., 1989, 1991; Cebeci, 1973). Moreover, the profile
corresponding to t ¼ 3T/4 shows clearly the presence of a backward flow with high
amplitude gradient in the vicinity of the wall. The amplitude of this phenomenon
gradually increases during the phase of the flow deceleration.

8.3.2 Temporal evolution of the unsteady temperature field. Particular control points
are located in the duct as shown in Figure 8. These points are chosen because we
expect significant results on dynamical and thermal phenomena in this region.

To understand the thermal fluid response to the periodic solicitations imposed to the
flow, Figure 9 presents the temporal evolution of the unsteady temperature at the

Figure 7.
Temporal evolution of the
radial profiles at different
times and sections along

the duct, � ¼ 0.3,
Re ¼ 30, Pr ¼ 0.73,

� ¼ 0:5
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control points, indicated in Figure 8. We observe that this evolution is far from being
uniform in the whole fluid vein. Indeed, in the immediate entry vicinity and close to the
wall, the fluid temperature follows the imposed periodic solicitations after a transient
stage, the duration of which depends on the position of the point.

The transient phase is as shorter as the point is near the source of pulsations and
closed to the axis. Beyond this transient phenomenon, we have a permanent regime
and the temporal evolution at all points seems perfectly sinusoidal. We notice that the
temperature amplitudes of each point depend on its duct position.

In order to have a global vision of the dynamic and thermal unsteady phenomena,
we carried out a spectral analysis with the FFT method, for the velocity and
temperature fields, on three temporal periods (t > 10). The Figures 10 and 11 show
that the most significant dynamic fluctuations are located at each constriction tube for
axial velocities and downstream the constriction for radial velocities. One can thus
expect a substantial modification of the thermal convective heat transfer in these
privileged areas, due to the thermal boundary modifications corresponding to the entry
section duct, and in the minimum sections as shown in Figure 5.

Figure 8.
Localization of control
points for the description
of the time-history
phenomena

Figure 9.
Temporal evolution of the
unsteady temperature to
the points of control
indicated on Figure 8.
Re ¼ 30, Pr ¼ 0.73,
� ¼ 0:7
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8.4 Unsteady convective heat transfer
On Figure 12, we study the Nusselt number evolution vs �, the pulsation frequency
located at point 4. This amplitude analysis is obtained by the FFT method realised on
the instantaneous Nusselt number defined by Equation (44). We observe a maximum
for the Nusselt number amplitudes for � ¼ 0:3.

The instantaneous heat transfer does not correspond to a measurable physical
reality. Thus it is necessary to consider the time averaged Nusselt number to quantify
the local heat transfer in this particular study:

Nu xð Þ ¼ Nu x; tð Þh i ¼ !

2�

ð2�=!

0

Nu x; tð Þdt ð47Þ

Figure 10.
Amplitudes fluctuations

for the axial (1) and radial
(2) velocity. Re ¼ 30,

� ¼ 0:7

Figure 11.
Amplitudes fluctuations

of the temperature.
Re ¼ 30, Pr ¼ 0.73,

� ¼ 0:7
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To evaluate the contribution of the pulsation on the heat transfer, we compare Nu xð Þ
with the Nusselt number Nu0 (x) obtained in steady flow. We confirm in Figure 13, a
very significant increase of the heat transfer located at the constriction, and conversely
a high reduction at maximum radius areas (zones of dead fluid). It is also noticed that
the values of the Nusselt number in stationary regime are higher than those obtained in
non-stationary mode, particularly at constriction regions.

Figure 12.
Evolution of Nusselt
number with pulsation
frequency on the item 4,
Re ¼ 30; Pr ¼ 0.73;
� ¼ 0.7

Figure 13.
Heat transfer comparison
in steady and unsteady
flow (� ¼ 10, � ¼ 5,
� ¼ 0:7)
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9. Conclusions
The previous numerical results with low pulsations have shown that the heat transfer
modification in cylindrical axisymmetric geometries is generally negligible, except for
the duct entry (Batina et al., 1989, 1991). At this section and close to the wall, important
thermal effects are observed. In this paper, numerical studies have been carried out on
pulsating flows through axisymmetric sinusoidal ducts. Thus, the study emphasizes
on the heat transfer modifications in this particular flows with rates modulation close
to the unit. The results obtained have shown that the flow in the axisymmetric
geometry is influenced by many parameters including Reynolds numbers, rate
modulation and amplitude of geometry. We observe that the results are encouraging
and offer good perspectives in pulsed internal flows cases. From numerical point of
view, the results obtained confirm the previous general conclusions in axisymmetric
geometries (André et al., 1981, 1987; Batina et al., 1989, 1991), i.e.:

(1) For the steady regime: all classical results are obtained with high precision.

(2) For the unsteady regime, dynamic and thermal fields show an important heat
transfer enhancement in the entry zone. A dynamic and thermal shock occur
nearly this area. Mechanical tube behaviour can be modified in this region and
the shear stress occurring during the pulsation can induce some damage if the
tube is connected to a big tank. This phenomenon is of great interest in
industrial structures. Nevertheless, convective heat transfer decrease when the
fluid moves forward in the tube.

Out of these general conclusions, this study focusing on sinusoidal geometries induce
especially zones of dead fluid that locally have a negative influence on heat transfer,
particularly for the steady flow. The spatial periodicity of the steady flow in this type
of geometry is acquired only at the end of the second, even third geometrical period.
The transient phenomena are therefore relatively short in time. Thus, the dynamic and
thermal behaviours of the flow become periodic.

Compared to models based on classical methods such as asymptotic developments,
finite differences, finite volumes, finite elements, etc, our numerical method leads to the
following remarks:

(1) The accuracy of the present model is high.

(2) The present computational code is easier to build compared to finite elements
one, for example.

(3) If we consider the CPU time, the present model needs few minutes to compute
the numerical equations. This result traduces the efficiency of our model which
is easier and more adapted to solve this particular problem. Nevertheless,
compared to some industrial code, our model have some disadvantages, such
as:

. the non-linear coupled unsteady terms in Navier-Stokes and energy
equations are not taken into account in the present model;

. this problem require smoother geometries;

. the order of polynomials developments increases strongly the computing
time;

. when the modulation flow-rate approaches the unity, we must choose
carefully some data to assume the algorithms convergence. For example,
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when � > 100 per cent, convergence conditions impose small time steps, and
the CPU time on classical computers can make our code prohibitive.

In a final analysis, our numerical method based on a suitable spectral method is of a good
accuracy. One of its originality is the choice of Chebyshev polynomials basis in both axial
and radial directions, and the use of a shift operator technique allow the introduction of
non-homogeneous boundary conditions. The automatic construction of these
polynomials is of a great interest. These particular mathematical and numerical tools
have permitted the resolution of this non-obvious problem which consists on pulsated
unsteady flows associated to simultaneous developments dynamic and thermal fields.
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André, P., Creff, R. and Batina, J. (1987), ‘‘Study of thermal fluid for pulsed flow with compressible
fluids’’, Numerical Methods in Thermal Problems, Fifth International Conference,
Montreal, Canada, Pineridge Press, Swansea, pp. 149-54.
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cylindrique’’, Thèse de Doctorat Physique, Université de Pau, Pau.
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Batina, J., Creff, R., André, P. and Blancher, S. (1989), ‘‘Numerical model for dynamic and thermal
developments of a turbulent pulsed ducted flow’’, Proceedings Eurotherm, Bochum,
No. 9, pp. 50-7.

Bernardi, C. and Maday, Y. (1992), Approximations Spectrales De Problèmes Aux Limites
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